This is an extension of Experiment No. 8 (Click Here). The PWM output is here connected to power a DC motor through a NPN driving transistor. The motor driving circuit is built in a breadboard, as shown below. The circuit is pretty straight forward, the PWM output from PIC pin drives the BC547 transistor ON and OFF, and the current to drive the motor is provided by the collector current in the transistor. The diode is for back EMF protection. I am using a small 6V DC motor from an old cassette player. For motors that require more current to drive, a darlington transistor pair or high power transistor is recommended.
The objective of this experiment is to interface a 16x2 LCD to PIC16F628A in 4-bit mode. This means the data transfer will use only four pins of the microcontroller. There is no additional hardware setup needed for this experiment, as we have a ready-made LCD interface female header. We only need to define the data transfer and control pins in the software. Remember, the LCD interface in our development board uses the following pins of PIC16F628A: Data Transfer : D4 -> RB4, D5 -> RB5, D6 -> RB6, D7 -> RB7 RS -> RA0, and EN -> RA1
wow.. does this mean you can actually control DC motor's rotation speed by using PWM?
ReplyDelete